Practical Consideration of Genotype Imputation: Sample Size, Window Size, Reference Choice, and Untyped Rate.
نویسندگان
چکیده
Imputation offers a promising way to infer the missing and/or untyped genotypes in genetic studies. In practice, however, many factors may affect the quality of imputation. In this study, we evaluated the influence of untyped rate, sizes of the study sample and the reference sample, window size, and reference choice (for admixed population), as the factors affecting the quality of imputation. The results show that in order to obtain good imputation quality, it is necessary to have an untyped rate less than 50%, a reference sample size greater than 50, and a window size of greater than 500 SNPs (roughly 1 MB in base pairs). Compared with the whole-region imputation, piecewise imputation with large-enough window sizes provides improved efficacy. For an admixed study sample, if only an external reference panel is used, it should include samples from the ancestral populations that represent the admixed population under investigation. Internal references are strongly recommended. When internal references are limited, however, augmentation by external references should be used carefully. More specifically, augmentation with samples from the major source populations of the admixture can lower the quality of imputation; augmentation with seemingly genetically unrelated cohorts may improve the quality of imputation.
منابع مشابه
Effect of Reference Population Size and Imputation Methods on the Accuracy of Imputation in Pure and Mixed Populations
Imputation as a method of creating low-density chips to high-density chips has been introduced to increase the accuracy of genomic selection in animals. In the current study, to investing imputation accuracy, three populations of mixed (scenario 1), pure (scenario 2) and mixed + pure (scenario 3) were simulated using QMSim. Two methods of imputation including Beagle and Flmpute were used fo...
متن کاملEstimation of genotype imputation accuracy using reference populations with varying degrees of relationship and marker density panel
Genotype imputation from low-density to high-density (SNP) chips is an important step before applying genomic selection, because denser chips can provide more reliable genomic predictions. In the current research, the accuracy of genotype imputation from low and moderate-density panels (5K and 50K) to high-density panels in the purebred and crossbred populations was assessed. The simulated popu...
متن کاملAnalyses and Comparison of Imputation-Based Association Methods
Genotype imputation methods have become increasingly popular for recovering untyped genotype data. An important application with imputed genotypes is to test genetic association for diseases. Imputation-based association test can provide additional insight beyond what is provided by testing on typed tagging SNPs only. A variety of effective imputation-based association tests have been proposed....
متن کاملA comparison of approaches to account for uncertainty in analysis of imputed genotypes.
The availability of extensively genotyped reference samples, such as "The HapMap" and 1,000 Genomes Project reference panels, together with advances in statistical methodology, have allowed for the imputation of genotypes at single nucleotide polymorphism (SNP) markers that are untyped in a cohort or case-control study. These imputation procedures facilitate the interpretation and meta-analyses...
متن کاملDIST: direct imputation of summary statistics for unmeasured SNPs
MOTIVATION Genotype imputation methods are used to enhance the resolution of genome-wide association studies, and thus increase the detection rate for genetic signals. Although most studies report all univariate summary statistics, many of them limit the access to subject-level genotypes. Because such an access is required by all genotype imputation methods, it is helpful to develop methods tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and its interface
دوره 4 3 شماره
صفحات -
تاریخ انتشار 2011